
SANT NISCHAL SINGH PUBLIC SCHOOL LADWA

CLASS VII

Made With Poster MyWath

੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă੶Ă

* Art integrated work: Write on Culture, Tradition and Food habits of Manipur along with Haryana on A4 size sheets.

1. महाभारत सार में से किन्ही पाँच पात्रों की सचित्र जानकारी A4 sheet पर लिखिए।

2. भारत के विभिन्न राज्यों में पाए जाने वाले पक्षियों पर एक कोलाज तैयार कीजिए।

3. हरियाणा और मणिपुर की कला और संगीत का अंतर स्पष्ट करते हुए सचित्र वर्णन कीजिए।

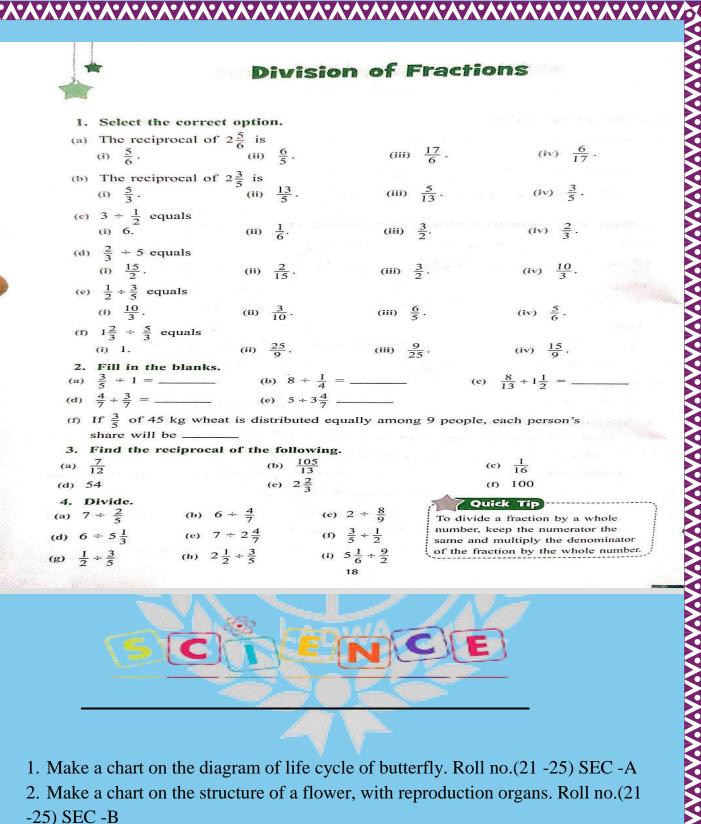
Art Integrated project:- Compare the weather data for the month of June in Haryana and Manipur Collect the report and make the project.Draw the graph by making table for one week report.

Activities:-1) know about story of Pi

2) Watch movies Ramanujan and "The Man Who Knew Infinity" and write the parts of the movies which you like the most.

3) Mathematicians who have won Nobel/ Able's medal and write about any five of them.

Maths- Do the following Worksheet on A4 Sheets in neat and clean Handwriting.


And Revise all the work done in class.

	roperty used.
(a) $(-8) + (-3) = (-3) + (-8)$	(b) $5 + 0 = 5 = 0 + 5$
(a) $(-3) + (-3) - (-3) + (-3)$ (c) $4 + (-4) = (-4) + 4 = 0$	(d) $2 + [(-3) + (-4)] = [2 + (-3)] + (-3)$
2. Add.	
(a) 47 + 93 =	(b) $-11 + (-86) = $
(c) $100 + (-40) =$	(d) $-55 + 45 =$
(c) $-701 + (-701) = $	
(g) $ -40 + -50 = $	
3. Fill in the blanks.	
(a) The sum of two integers is	
(b) Two integers can be added	
addition is	
(a) The additive identity for a	n integer is
(c) The additive identity for a	
(d) $[(-6) + (-5)] + $	_ = (-6) + [+ 1]
(d) $[(-6) + (-5)] + _$ (e) $-555 + _$ = -	- = (-6) + [+ 1] -555
(d) $[(-6) + (-5)] + $ (e) $-555 + $ = (f) The sum of an integer and	_ = (-6) + [+ 1] -555 I its additive inverse is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 l its additive inverse is is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 I its additive inverse is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 It is additive inverse is is 16 m to the north, m represents going
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 lits additive inverse is is 16 m to the north, m represents going greatest negative integer is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 lits additive inverse is is 16 m to the north, m represents going greatest negative integer is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1] -555 lits additive inverse is is 16 m to the north, m represents going greatest negative integer is
 (d) [(-6) + (-5)] +	_ = (-6) + [+ 1]555 I its additive inverse is is 16 m to the north, m represents going e greatest negative integer is Team B in five successive rounds of a quiz are as fold 25; Team B: 10, -8, 12, -5 and 21
 (d) [(-6) + (-5)] +	$= (-6) + [_ + 1]$ $= (-6) + [_ + 1]$ $= -555$ It is additive inverse is
 (d) [(-6) + (-5)] +	$= (-6) + [_ + 1]$ $= -555$ It is additive inverse is

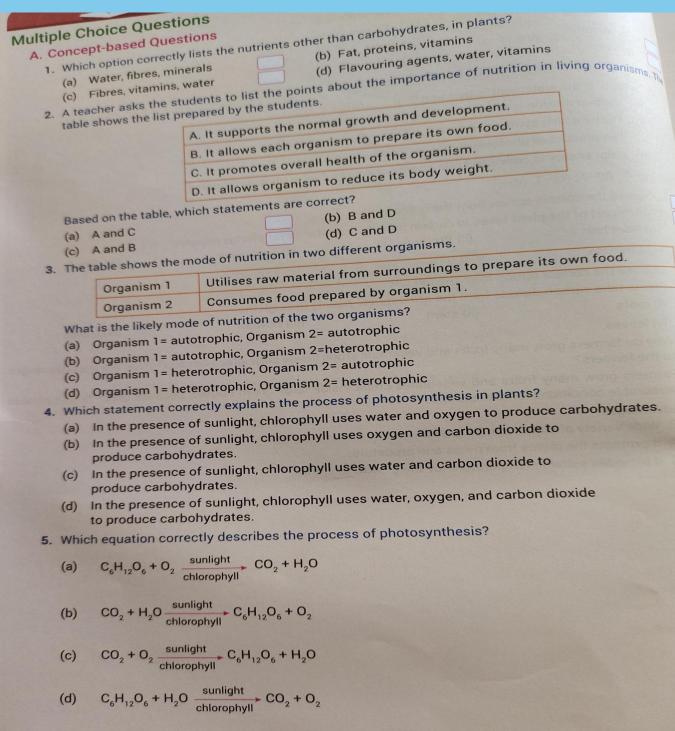
* Propert	ies of Sub	troction	of Integers
		raction	of Integers
. Select the correct o	ption.		
) The value of (-7) –			
(i) -2 . The value of $(-9) - $	(iii) 2. (-4) is	(iii) 16.	(iv) -16.
(i) 5.	(ii) -13.	(iii) 13.	(iv) -5.
The value of $(-5) =$	(-8) is (ii) -13.		
The value of $27 - (-$		(iii) 13.	(iv) -3.
(i) -45.	(ii) -9.	(iii) 45.	(iv) 9.
positive integer is	when the greatest	negative integ	er is subtracted from the smallest
(i) -2 .	(ii) 0.	(iii) 1.	(iv) 2.
. Subtract.) 32 from 29		()) 55 from	0.5
) 32 from 29		(b) -55 from (d) -61 from	
The sum of 42 and	-6 from the sum of	of -42 and 6	
-77 from the sum o The sum of 1320 and		19	
Fill in the blanks.	d =2020 nom =80		
16 - (-4) -	= 87	(b) (-21) -	(-10) =
(-15) - 5 =		(d) $0 - (-8)$	45) =
The properties that a		e subtraction o	f integers are
and If the difference of :	an integer a and (-5) is -2 , the	value of a is
 Solve these problem Manav travelled 54 	ns		
If it ascends by 200	0 m, what is its r	vel. new	(To subtract integer b from integer a, add the additive inverse of b to a
position below sea	00 m, what is its r	7	add the additive inverse of <i>D</i> to a
	00 m, what is its r	lew	add the additive inverse of <i>D</i> to a
	00 m, what is its r	lew	add the additive inverse of <i>b</i> to a
position below sea	00 m, what is its r level?		rs: Properties of
position below sea	00 m, what is its r level?		rs: Properties of ntegers - 1
position below sea	00 m, what is its r level?		rs: Properties of ntegers - I
Desition below sea	O m, what is its r level? Iplication o Multiplica (b) 12 3	7 of Integet tion of In	rs: Properties of
position below sea	00 m, what is its r level? iplication o Multiplica (b) 12 > (c) 21 >	7 of Integet tion of In	rs: Properties of ntegers – I (c) 7 × (-22)
Position below sea Multi 1. Find. (a) 6 × (-19) (d) 15 × (-16)	00 m, what is its r level? iplication o Multiplica (b) 12 > (c) 21 > (b) (-31	7 of Integet tion of I < (-32) < (-32)	(c) 7 × (-22) (f) (-42) × 12
 position below sea Mult 1. Find. (a) 6 × (-19) (d) 15 × (-16) (g) -55 × 15 (j) (-83) × (-28) 2. Find and choice 	00 m, what is its r level? plication o (b) 12 > (c) 21 > (h) (-31) eck.	7 of Intege tion of I (-32) (-32)) × (-100)	(c) 7 × (-22) (f) (-42) × 12
 Position below sea 1. Find. (a) 6 × (-19) (d) 15 × (-16) (g) -55 × 15 (f) (-83) × (-28) 2. Find and che (a) Is 10 × [(6 + 10)) 	(b) $12 \Rightarrow$ (b) $12 \Rightarrow$ (b) $12 \Rightarrow$ (c) $21 \Rightarrow$ (b) (-31)	7 f Integel tion of I (-32) (-32)) × (-100) 0 × (-2)?	(e) 7 × (-22) (f) (-42) × 12 (i) (-25) × (-72)
 position below sea Multi 1. Find. (a) 6 × (-19) (d) 15 × (-16) (g) -55 × 15 (j) (-83) × (-28) 2. Find and che (a) Is 10 × [(6 + (b) Is (-15) × [(- 3. Find using the 	00 m, what is its r level? (b) $12 \Rightarrow$ (c) $21 \Rightarrow$ (c) $21 \Rightarrow$ (n) (-31)) eck. $(-2)] = 10 \times 6 + 10$ $(-7) + (-1)] = (-15) \Rightarrow$ he distributive prop	7 f Integet tion of I (-32) (-32) (-32) (-32) (-32) (-32) (-100) (-7) + (-15) > erty.	(c) 7 × (-22) (f) (-42) × 12 (i) (-25) × (-72) (-1)?
 Multi 1. Find. (a) 6 × (-19) (d) 15 × (-16) (g) -55 × 15 (j) (-83) × (-28) 2. Find and che (a) Is 10 × [(6 + (b) Is (-15) × [(-3.) 3. Find using th (a) (-49) × 18 	00 m, what is its r level? (b) $12 > (c) 21 > ($	7 f Integet tion of I (-32) (-32) (-32) (-32) (-32) (-32) (-100) (-7) + (-15) > erty.	(e) 7 × (-22) (f) (-42) × 12 (i) (-25) × (-72)
 position below sea Multi 1. Find. (a) 6 × (-19) (d) 15 × (-16) (g) -55 × 15 (j) (-83) × (-28) 2. Find and che (a) Is 10 × [(6 + (b) Is (-15) × [(- 3. Find using the 	00 m, what is its for level? (b) $12 \Rightarrow$ (c) $21 \Rightarrow$ (c) $21 \Rightarrow$ (h) (-31) (eck. $(-2)] = 10 \times 6 + 10$ $(-7) + (-1)] = (-15) \Rightarrow$ (b) (-25) (c) (-25)	7 f Integet tion of I (-32) (-32) (-32) (-32) (-32) (-32) (-100) (-7) + (-15) > erty.	(c) 7 × (-22) (f) (-42) × 12 (i) (-25) × (-72) (-1)?
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (j) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + 10)]$ (b) Is $(-15) \times [(-10)]$ 3. Find using the (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= = 3$ (d) $ \times (-189)$	$(b) 12 \Rightarrow (b) 12 \Rightarrow (b) 12 \Rightarrow (c) 21 \Rightarrow (b) (-31)$ eek. $(-2)] = 10 \times 6 + 10$ $(-2)] = 10 \times 6 + 10$ $(-7) + (-1)] = (-15) \times 10$ (-25) inks. $(-6) -1 \times 10$ $(-6) -1 \times 10$ $(-6) -1 \times 10$	7 f Intege ion of I (-32) (-32) (-32) (-100) (-7) + (-15) > erty. (-31)	(c) 7 × (-22) (d) (-42) × 12 (e) (-42) × 12 (f) (-25) × (-72) (f) (-25) × (-72) (f) (-25) × (-72)
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (j) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + 10)]$ (b) Is $(-15) \times [(-3)]$ 3. Find using the (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= = 3$ (d) $ \times (-189)$ (g) $[6 \times (-20)] \times 9$	00 m, what is its r level? (b) $12 > (c) 21 > ($	7 f Integel tion of I < (-32) < (-32) > (-31) = (-14) = 14	(c) 7 × (-22) (c) 7 × (-22) (c) 7 × (-22) (c) (-42) × 12 (c) (-42) × (-72) (c) 70 × (-19) + (-1) × 70 (c) -605 × = -605
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (j) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + 10)]$ (b) Is $(-15) \times [(-3)]$ 3. Find using the (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= = 3$ (d) $ \times (-189)$ (g) $[6 \times (-20)] \times 9$	(b) 12 > (b) 12 > (b) 12 > (c) 21 > (7 f Integel tion of I < (-32) < (-32) > (-31) = (-14) = 14	(c) 7 × (-22) (c) 7 × (-22) (c) 7 × (-22) (c) (-42) × 12 (c) (-42) × (-72) (c) 70 × (-19) + (-1) × 70 (c) -605 × = -605
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (j) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + + $	(b) 12 > (b) 12 > (b) 12 > (c) 21 > (7 • f Integel + ion of I < (-32) < (-32) > > (-100) > > (-2)? < (-7) + (-15) > erty. > > (-31) = 1000 × (-14) = 14]	(c) 7 × (-22) (c) 7 × (-22) (c) 7 × (-22) (c) (-42) × 12 (c) (-42) × (-72) (c) 70 × (-19) + (-1) × 70 (c) -605 × = -605
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) $15 \ 10 \times [(6 + 10)] \times [(-3)] \times ((-3)] \times$	(b) 12 > (b) 12 > (c) 21 > (7 6 Integel ion of I (-32) (-31) (-32) (-32) (-32) (-32) (-31) (-32) (-3	$(c) 7 \times (-22)$ (c) 7 \times (-22) (f) (-42) \times 12 (f) (-42) \times 12 (f) (-25) \times (-72) $(c) 70 \times (-19) + (-1) \times 70$ (c) -605 × = -605 (f) × (-8) = (-8) \times 45
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) $18 \ 10 \times [(6 + 10)] \times [(-3) \times (-15) \times [(-3) \times (-15) \times (-$	(b) 12 > (c) 21 > (c) (c)	7 6 Integel ion of I (-32) (-31) (-32) (-32) (-32) (-32) (-31) (-32) (-3	$(c) 7 \times (-22)$ (c) 7 \times (-22) (f) (-42) \times 12 (f) (-42) \times 12 (f) (-25) \times (-72) $(c) 70 \times (-19) + (-1) \times 70$ (c) -605 × = -605 (f) × (-8) = (-8) \times 45
position below sea 1 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + 10) \times (-28)]$ 3. Find using the (a) Is $(-15) \times [(-3)]$ 4. Fill in the bla (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= 3$ (d) $\times (-189)$ (g) $[6 \times (-20)] \times 9$ (h) $[8 \times] \times (-189)$ (c) $[6 \times (-20)] \times 9$ (c) 5 . Put >, < or = 10 (a) $86 - 40 \times 15$ (b) $[(-16) + (-21)]$ (c) $[(-67) - 11] \times 10^{-10}$ 5. Solve these pro-	$(b) 12 \rightarrow (e) 21 \rightarrow (e) 21 \rightarrow (h) (-31)$ $(-25) = 10 \times 6 + 10(-7) + (-1)] = (-15) \times (h) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-25) = 0 (e) -(-5) \times (b) (-25)$ $(b) (-31) = (-15) \times (b) (-31) \times (b) = 0$ $(b) (-31) = (-3) \times (b) = 0$ $(c) (-31) = (-3) \times (c) = 0$ $(c) (-3) = (-3) \times (c) = 0$ $(c) (-3) = (-3) \times (c) = 0$ $(c) (-3) = (-3) \times (c)$	7 f integet ion of l < (-32) < (-32) < (-32) > > (-100) > > (-2)? < (-7) + (-15) > erty. > > (-31) = 1000 × (-14) = 14] > < (-53) + (-2)? 1 × (-9)	$(-53)^{(-53)}$
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (j) $(-83) \times (-28)$ 2. Find and che (a) $15 \times [(6 + 10)]$ (b) $18 (-15) \times [(-3)]$ 3. Find using the (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= 3$ (d) $ \times (-189)$ (g) $[6 \times (-20)] \times 5$ (h) $[8 \times] \times (-5)$ Put >, < or = (a) $86 - 40 \times 15$ (b) $[(-16) + (-21)]$ (c) $[(-67) - 11] \times 5$ 6. Solve these pro- (a) A test paper cool -1 mark for eac	(b) 12 > (c) 21 > (c)	7 f Integel ion of I (-32) (-32) (-32) (-32) (-32) (-32) (-31) (-7) + (-15) > erty. (-7) + (-15) > erty. (-7) + (-15) > (-7) + (-15) > (-14) = 14 (-14) = 14 (-15) = 1000 (-14) = 14 (-14) = 14 (-15) = 1000 (-14) = 14 (-14) = 14 (-14) = 14 (-14) = 14 (-14) = 14 (-14) = 14 (-15) = 1000 (-14) = 14 (-14) = 14 (-15) = 1000 (-14) = 10000 (-14) = 10000 (-14) = 10000 (-14) = 10000 (-14) = 10000 (-14) = 100000 (-14) = 1000000 (-14) = 100000000000000000000000000000000000	(-53) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
position below sea 1 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) Is $10 \times [(6 + 10^{-1}) \times [(-3) \times (-15) \times [(-3) \times (-15) $	(b) 12 > (c) 12 > (c) 21 > (c) (-31) (c) (c) (-31) (c)	7 f integet ion of l (-32) (-32) (-32) (-32) (-32) (-32) (-32) (-32) (-31) (-7) + (-15) > erty. (-7) + (-15) > erty. (-7) + (-15) > erty. (-7) + (-15) > erty. (-31) (-100)	$(a) = add the addite function is not in the properties of finite gers - 1 (a) 7 \times (-22)(b) (-42) \times 12(c) 7 - (-22) \times (-72)(c) 7 - (-22) \times (-72)(c) 70 \times (-19) + (-1) \times 70(c) -605 \times605(d) - \times (-8) = (-8) \times 45(e) -605 \times605(f) - \times (-8) = (-8) \times 45$
position below sea 1 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) $15 \ 10 \times [(6 + 10)] \times [(-3)] \times [(-3)] \times (-28)]$ 3. Find and che (a) $15 \ 10 \times [(6 + 10)] \times (-28)]$ 4. Fill in the bla (a) $(-49) \times 18$ 4. Fill in the bla (a) $-4 \times= = 3$ (d) $ \times (-189)$ (g) $[6 \times (-20)] \times 5$ (h) $[8 \times] \times (-5)$ 5. Put >, < or = = (a) $86 - 40 \times 15$ (b) $[(-16) + (-21)]$ (c) $[(-67) - 11] \times 5$ 6. Solve these pro- (a) A test paper con -1 mark for eac (i) Ramesh gets attempted. W (ii) Reena gets fill	(b) 12 > (c) 12 > (c) 21 > (c) (-31) (c) (-25) (c) (c) (-25) (c)	7 6 integel ion of in (-32) (-32) (-32) (-32) (-32) (-32) (-32) (-32) (-31) (-2) (-7) + (-15) = (-7) = (-100) (-7) + (-15) = (-7) = (-7) + (-2) = (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) + (-7) = (-7) = (-7) + (-7) = (-7) = (-7) = (-7) = (-7) = (-7) = (-7)	The addition function (-53) (c) $7 \times (-22)$ (f) $(-42) \times 12$ (g) $(-25) \times (-72)$ (e) $70 \times (-19) + (-1) \times 70$ (f) $(-605 \times - 605)$ (g) $-605 \times - 605$ (g) $-800 \times (-8) = (-8) \times 45$ (g) (-53) (h) (-53)
position below sea 1. Find. (a) $6 \times (-19)$ (d) $15 \times (-16)$ (g) -55×15 (f) $(-83) \times (-28)$ 2. Find and che (a) $1s \ 10 \times [(6 + 10^{-1})) \times [(-3) + 10^{-1}]$ (b) $1s \ (-15) \times [(-3) + 10^{-1}] \times [(-3) + 10^{-$	(b) 12 > (c) 21 > (c) (c) 21 > (c) (c) 21 > (c)	7 F Integel ion of I (-32) (-32) (-32) (-32) (-32) (-32) (-31) (-7) + (-15) > erty. (-7) + (-15) > (-7) + (-2) = (-7) + (-2) =	$(a) = add the addite function is not in the properties of finite gers - 1 (a) 7 \times (-22)(b) (-42) \times 12(c) 7 - (-22) \times (-72)(c) 7 - (-22) \times (-72)(c) 70 \times (-19) + (-1) \times 70(c) -605 \times605(d) - \times (-8) = (-8) \times 45(e) -605 \times605(f) - \times (-8) = (-8) \times 45$

1 10				
-	Multiplicatio	n of Integ	ers: Prope	rties of
Based.			Integers -	2
1. F	ind the product by suita $(-17) \times (-10) \times 8$		$-20) \times 6 \times (-5)$	
(c) (-	(1) × (-4) × (-7) × (-5)		$(-20) \times 0 \times (-3)$ 25 × (-37) × (-4)	
	× 26 × (-125)		$-16) \times 75 \times (-4)$	< (-1)
	and the product using a $82 \times (-16) + (-1982) \times 3$		•	
	57 × 99 - (-3657)	54		lick Tip
(c) 57	92 × 983 – 4792 × 983		To multi	ply a series of integers.
3. Ve	rify. $\times (-28) = (-28) \times 34$		integers.	If it is odd, the product
	$\times [9 \times (-5)] = (-5) \times (8 \times 10^{-5})$	× 9)	will be n For exan	iple:
(c) 21	$\times [8 + (-2)] = 21 \times 8 +$	21 × (-2)	2. (-2)	$(-1) \times (-1) = -1$ $(-3) \times (-4) = -24$
	$(5) \times [(-9) + 11] = (-35)$			$1 \times (-2) \times (-3) \times 4 = -24$ $1 \times 2 \times (-3) \times (-4) = -24$
	hat will be the sign of the multiply	he product if	*	
	5 negative integers and 3		?	
	negative integers and 1 p termine the integer who		-1 is	
a) -40		(c)		
6. Sol	ve these problems.			
a) A s	hopkeeper purchased 150	0 pens at ₹12 eac	ch and sold them a	at ₹13 each. What is his
b) The	distance above the grou	and is represented	by a positive inte	eger and that below the
gro	und by a negative intege An elevator descends int	r. Answer the giv to a mine shaft at	the rate of 4 m p	er minute. What will be
	the manufation of the second back			
A PETER AND A PETER AND	If it begins to descend fr 50 minutes?			
(c) The	temperature of a hot m	etallic rod is 225	°C. If it is made ure after 20 minu	to cool off at the rate of tes?
4 - (c every minute, what wi	The second se		
11		764 IC203	8 10 1 2 1	INVERT .
			_	
	Divi:		egers: Prop	
	Bund	Division	of Integers	
	1. Find.		= -0.75	Get it Right!
	(a) $(-100) \div 5$ (c) $(-75) \div 5$	(b) $(-81) \div$ (d) $(-32) \div$		$0 \div 6 = 0$
	(c) $(-73) + 3$ (c) $125 \div (-25)$	(f) $80 \div (-52)$		Zero divided by an integer (other than zero) equals zero.
	(g) $64 \div (-16)$	(b) $(-36) \div$	(-4)	$6 \div 0 = 0$
2	(i) $(-201) \div (-3)$	(j) (-325) ÷	(-13)	Division by 0 is not defined. Thus 6 ÷ 0
	2. Tick the correct s	tatement.		Is not meaningful.
	(a) (i) $27 \div 3 = 3 \div 2^{\circ}$	7	(ii) $27 \div 3 \neq 3 \neq 3$	- 27
	(b) (i) $0 \div (-14) = 0$		(ii) $(-14) \div 0 = 0$	D
	(c) (i) $-1623 \div 2$ is an	integer	(ii) $-1623 \div 2$ is	not an integer.
	(d) (i) $(-2555) \div 1 = -$		(ii) (-2555) ÷ 1 =	110 M
	(e) (i) $(-9999) \div (-1) =$	= 9999	(ii) $9999 \div (-1) =$	= 9999
	(f) (i) $18 \div [(-6) \div (-3)]$	$] = [18 \div (-6)] \div (-6)$	(-3)	
			2020 El 21/2 20	
	(ii) 18 ÷ [(−6) ÷ (−3)	$J \neq [18 \div (-6)] \div ($		
	(ii) 18 ÷ [(−6) ÷ (−3)3. Simplify.)] ≠ [18 ÷ (−6)] ÷ (\div [(-4) × 125]
		-14	(b) [16 × (-250)]	
	 3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (-1)] (c) [(-70) + 5] ÷ [(-6) + 	1	(d) $[(-1000) \div 100]$)] ÷ 10
	 3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (−1)] (c) [(−70) + 5] ÷ [(−6) + (c) 84 ÷ [7 × (−3)] 	1])] ÷ 10
	 3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (-1)] (c) [(-70) + 5] ÷ [(-6) + (e) 84 ÷ [7 × (-3)] 4. Solve these problems] 1] s.	(d) $[(-1000) \div 100]$ (f) $ -22 + 22 \div$	$\begin{array}{l} D] \div 10 \\ \cdot 11 + -11 \end{array}$
	 3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (−1)] (c) [(−70) + 5] ÷ [(−6) + (c) 84 ÷ [7 × (−3)]] - 1] s. g at a height of 200	(d) $[(-1000) \div 100$ (f) $ -22 + 22 \doteq$ 00 m. If it descend)] ÷ 10 - 11 + −11 s at a constant rate of
	 3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (-1)] (c) [(-70) + 5] ÷ [(-6) + (e) 84 ÷ [7 × (-3)] 4. Solve these problems (a) An aeroplane is flying 70 m/min, how long w (b) The product of two integration of two integrations.] 1] s. g at a height of 200 will it take to desce	 (d) [(-1000) ÷ 100 (f) -22 + 22 ≠ 00 m. If it descendend to a height of 0 	0] ÷ 10 - 11 + –11 s at a constant rate of 500 m?
(3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (-1)] (c) [(-70) + 5] ÷ [(-6) + (e) 84 ÷ [7 × (-3)] 4. Solve these problems (a) An aeroplane is flying 70 m/min, how long w (b) The product of two integer.] - 1] s. g at a height of 200 will it take to desce tegers is 180. If or	(d) $[(-1000) \div 100$ (f) $ -22 + 22 \doteq 00$ m. If it descended to a height of the of the integers i	$p] \div 10$ 11 + -11 s at a constant rate of 500 m? s -15, find the other
(3. Simplify. (a) (25 ÷ 5) ÷ [5 ÷ (-1)] (c) [(-70) + 5] ÷ [(-6) + (e) 84 ÷ [7 × (-3)] 4. Solve these problems (a) An aeroplane is flying 70 m/min, how long w (b) The product of two integration of two integrations.] - 1] s. g at a height of 200 will it take to desce tegers is 180. If or into a shaft at a rat	(d) $[(-1000) \div 100$ (f) $ -22 + 22 \doteq 00$ m. If it descended to a height of the of the integers	$p] \div 10$ 11 + -11 s at a constant rate of 500 m? s -15, find the other

Division of In	of Integers - 2
1. Select the correct option.	or intregers – 2
(a) $(-48) \div 4$ equals (i) 12. (ii) -6.	(iii) 6. (iv) -12.
(b) $(-39) \div (-3)$ equals (i) -36 . (ii) 36.	
(c) $35 \div (-5)$ equals (i) -35 . (ii) 35 .	(iii) -13. (iv) 13.
(d) $0 \div (-12)$ equals	(iii) 7. (iv) -7 .
(i) -12. (ii) 12. 2. Write True or False.	(iii) 0. (iv) -1 .
(a) $0 \div 4 = 0$ (c) $-15 \div 0 = 0$	- (b) $0 \div (-7) = 0$
(c) $(-8) \div (-1) = -8$	- (d) $10 \div 0 = 0$ - (f) $-8 \div (-2) = 4$
3. Fill in the blanks. (a) 296 ÷ = −148	(b) $-88 \div ___= 11$
(c) $84 \div ___ = 12$	(d) $$
(e) $$	(f) $$
(i) $\pm (-8) = -65$ 4. Verify that $a \neq (b + c) \neq (a + b)$	(j) $-1728 \div$ = 12 + ($a \div c$) for the given values of a , b and c .
(a) $a = 8, b = -2, c = 4$	(b) $a = 16, b = 8, c = -4$
5. Simplify.	(b) $[(-64) \div 16] \div 4$
(a) $[(-8) + 4] \div [(-5) + 1]$ (c) $[56 \div (-7)] \div [(-94) \div (-47)]$	(d) $[(-22) + 4] \div [(-11) - (-2)]$
(e) $[(-49) \div 7] \div (-7)$ (g) $(45 \div 9) - [(-36) \div 9]$	(f) $[(-11) + (-5)] + [3 + (-1)]$ (h) $[(-56) + (-8)] + [(-7) + 7]$
(i) $[84 + (-7)] + [(-21) + 7]$	(i) $[(-11) - (-2)] \div [(-15) + 12]$
6. Solve these problems.	for each correct answer and -1 mark is given for a the questions not attempted. Mansi scored 30 ma
新教育教育教育教育教育教育	
A STREET BARCOLL	on of Fractions
	on of Fractions
1. Select the correct option.	
1. Select the correct option.	
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² .
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$.
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{26}$.
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64
 Select the correct option. (a) The area of a square with side 1 ¹/₄ m (b) The missing fraction in ³/₅ × ¹/₁ = ²/₆ (c) Which of these has the greatest value? Multiply. If the product is an improvement of the second s	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction.
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 oper fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction.
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find.	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 oper fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1. 4. Solve.	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (b) $\frac{3}{4}$ of $\gtrless 100$ (b) $\frac{1}{6}$ of a	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (c) $\frac{1}{2}$ of an hour
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (b) $\frac{3}{4}$ of $\gtrless 100$ (b) $\frac{1}{6}$ of a	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (c) $\frac{1}{2}$ of an hour
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value? 2. Multiply. If the product is an improduct is $\frac{2}{7} \times 3$ (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (h) $\frac{1}{2}$ of 10 (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 (b) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{7}{8}$ of a day (e) $\frac{9}{10}$ of a	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an improduct is an improduct is an improduct is an improduct is $\frac{2}{7} \times 3$ (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) Multiply. If the product is an improduct is a improduct is an improd	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 oper fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (c) $\frac{1}{2}$ of an hour (f) $\frac{49}{84}$ of a dozen
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1 4. Solve. (b) $\frac{3}{4}$ of $\gtrless 100$ (c) $\frac{1}{6}$ of a (c) $\frac{7}{8}$ of a day (c) $\frac{9}{10}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$	is (i) $1\frac{9}{16}$ m². (ii) 9 m². (iii) $20\frac{1}{4}$ m². $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (c) $\frac{1}{2}$ of an hour
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1 4. Solve. (b) $\frac{3}{4}$ of $\overline{100}$ (c) $\frac{1}{6}$ of a (c) $\frac{7}{8}$ of a day (c) $\frac{9}{10}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems.	(i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . (iii) $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $\frac{3 \times \frac{1}{8}}{11}$ (i) $\frac{13}{11} \times 6$ (j) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ (i) $\frac{1}{2}$ of an hour (j) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1 4. Solve. (b) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (c) $\frac{9}{10}$ of a (d) $\frac{7}{8}$ of a day (c) $\frac{9}{10}$ of a (e) $\frac{9}{10}$ of a (f) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we	(i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . (iii) $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $3 \times \frac{1}{8}$ (i) $\frac{13}{11} \times 6$ (j) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ (i) $\frac{1}{2}$ of an hour (j) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ (k, Atul read $\frac{3}{4}$ of the book. How many pages
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{7}{8}$ of a day (c) $\frac{9}{10}$ of a (d) $\frac{7}{8}$ of a for $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (f) $\frac{49}{84}$ of a dozen (b) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read?
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an improduct (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 1 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (c) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ 5. Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left A submarine of height $7\frac{1}{4}$ m is floating	is (i) $1 \frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20 \frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 oper fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (e) $\frac{2}{5}$ of 25 year (f) $\frac{49}{84}$ of a dozen (h) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read? g in water. If $\frac{1}{3}$ of its height is below the surface
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left A submarine of height $7\frac{1}{4}$ m is floating of water what is the height of the subm	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (f) $\frac{49}{84}$ of a dozen (h) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read? g in water. If $\frac{1}{3}$ of its height is below the surface marine visible above the surface of water?
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left A submarine of height $7\frac{1}{4}$ m is floating of water what is the height of the subm	is (i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (iii) $20\frac{1}{4}$ m ² . $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. ? (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 per fraction, express it as a mixed fraction. (c) $3 \times \frac{1}{8}$ (d) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ 6 (c) $\frac{2}{5}$ of 25 year (f) $\frac{49}{84}$ of a dozen (h) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read? g in water. If $\frac{1}{3}$ of its height is below the surface marine visible above the surface of water?
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an improduct (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left A submarine of height $7\frac{1}{4}$ m is floating of water, what is the height of the subm A container holds $4\frac{3}{5}$ kg of sugar. How	(i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (ii) $20\frac{1}{4}$ m ² . (iii) $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $\frac{11}{9}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $3 \times \frac{1}{8}$ (i) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ (i) $\frac{1}{2}$ of an hour (j) $\frac{49}{84}$ of a dozen (i) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ (b) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read? g in water. If $\frac{1}{3}$ of its height is below the surface marine visible above the surface of water? much sugar will be there in 25 such containers? ts perimeter.
1. Select the correct option. (a) The area of a square with side $1\frac{1}{4}$ m (b) The missing fraction in $\frac{3}{5} \times \frac{1}{100} = \frac{2}{6}$ (c) Which of these has the greatest value 2. Multiply. If the product is an impro- (a) $\frac{2}{7} \times 3$ (b) $\frac{9}{7} \times 6$ (c) $1\frac{4}{9} \times 6$ (f) $5 \times 2\frac{3}{7}$ 3. Find. (a) $\frac{1}{2}$ of 10 (b) $\frac{1}{4}$ of 10 4. Solve. (a) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of ₹ 100 (b) $\frac{1}{6}$ of a (c) $\frac{3}{4}$ of $\frac{5}{6}$ or $\frac{5}{9}$ of $\frac{3}{7}$ Solve these problems. A book consists of 384 pages. Last we did he read? How many pages are left A submarine of height $7\frac{1}{4}$ m is floating of water what is the height of the subm	(i) $1\frac{9}{16}$ m ² . (ii) 9 m ² . (ii) $20\frac{1}{4}$ m ² . (iii) $\frac{27}{65}$ is (i) $\frac{9}{13}$. (ii) $\frac{13}{9}$. (iii) $\frac{27}{65}$. (i) $\frac{11}{19}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $\frac{11}{9}$ of 38 (ii) $\frac{15}{6}$ of $\frac{36}{5}$ (iii) $\frac{7}{8}$ of 64 (i) $3 \times \frac{1}{8}$ (i) $\frac{13}{11} \times 6$ (g) $\frac{8}{3} \times \frac{4}{7}$ (h) $\frac{3}{4} \times \frac{2}{3}$ (i) $\frac{1}{2}$ of an hour (j) $\frac{49}{84}$ of a dozen (i) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ (b) $\frac{4}{5}$ of $\frac{3}{8}$ or $\frac{2}{7}$ of $\frac{3}{10}$ ek, Atul read $\frac{3}{4}$ of the book. How many pages to be read? g in water. If $\frac{1}{3}$ of its height is below the surface marine visible above the surface of water? much sugar will be there in 25 such containers? ts perimeter.

- 3. Make a chart on the diagram of water cycle. Roll no.(21 -25) SEC -C
- 4. Make a chart on the structure of human heart. Roll no.(21 -25) SEC -D
- 5. Project :-

1. Work in pairs. Grow a new species of rose plant by grafting method, using two different types of rose plants. Compare the quantity of new species with a normal rose plant. Make a report on the growth of the plant. Present it in class and discuss your findings with your classmates.


2. Make a

Art integrated project:-

Imagine you are going on a two day adventure camp along with your Friends at the , Manipur. How will you prepare yourself for the trip? What kind of plants, trees and wildlife are you to see in those forests? How will you ensure that all of you will have a safe and happy trip?

Find out about the tourist guidelines given by the state forest department of Manipur and be a responsible tourists.

Science:- Do the following worksheet on A4 sheets in near and clean handwriting and learn all the syllabus which was done in class. (Ch-1,2)

5.	Plants prepare carbohydrates during photosynthesis. Which nutrient is likely to be synthesised in plants
	when the soil is rich in bacteria that fix gaseous nitrogen?

- Minerals (a)
 - (b) Proteins
 - (d) Water
- 7. How do plants that lack chlorophyll to perform photosynthesis prepare its food?

- (a) They obtain simple food from animals.
- (b) They obtain raw materials from their surroundings.
- (c) They obtain food in the form of energy from sunlight.
- (d) They obtain readymade food from photosynthetic plants.
- 8. The table lists the characteristic of an insectivorous plant.

A. It is green in colour.

- B. The body of the plant consists of a lid and pitcher.
- C. It traps the insects and digests them by secreting digestive juices.

Based on these characteristics, what is the likely mode of nutrition of this plant?

(a) Autotrophic

(c) Vitamins

- (b) Autotrophic and Heterotrophic
- (c) Both autotrophic and saprotrophic
- (d) Both heterotrophic and saprotrophic
- 9. Listed below are some of the characteristics of saprophytes and symbionts.

A. They absorb nutrients from dead and decay.

- B. They depend on plants and animals for nutrition.
- C. They live together with other organisms to share space and food.

Which option correctly classifies these characteristics?

	Α	В	С		
(a)	Symbionts	Both saprophytes and symbionts	Saprophytes		
(b)	Saprophytes	Both saprophytes and symbionts	Symbionts		
(c)	Both saprophytes and symbionts	Saprophytes	Symbionts		
(d)	Symbionts	Saprophytes	Both saprophytes and symbionts		

10. In legumes, Rhizobium bacteria are commonly observed in the roots. The Rhizobium provides u nitrogen while the plant in return provides shelter and food to the bacteria. What is the type of relation between these both?

- (a) Symbiotic, as both benefit each other for food.
- (b) Competition, as both compete for atmospheric nitrogen.
- Parasitic, as Rhizobium consumes food prepared by plants. (c)
- (d) Saprophytic, as Rhizobium decomposes the roots of the plant and feed on them.

SOCIAL SCIENCE

1. Revise all the chapters done in the class.

2. Frame 15 mcqs from the following chapters:

- Ch 3.Local Administration- Panchayat
- Ch 5. Places of Historical Significance
- Ch 9. Agricultural Pattern

3.Prepare charts on the following topics:

1.Different rainfall and climate of India Roll No. (11-15) 7A

2. Panchayati Raj system Roll No. (11-15) 7B

3. Types of farming and different crops Roll No. (11-15) 7C,D

3.Art integrated:

Create an artwork depicting changes in cultural practices from ancient to modern times of Manipur.Compare it with Haryana

Design Your Dream Gadget": Students can create imaginative designs for futuristic gadgets using drawing or digital design tools, accompanied by written descriptions of their features and functions. B y using thick chart and water color design your dream gadget and write some its features.

Revise work all done in notebook.